Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Ann Neurol ; 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2318647

ABSTRACT

OBJECTIVE: Peroxisome injury occurs in the central nervous system (CNS) during multiple virus infections that result in neurological disabilities. We investigated host neuroimmune responses and peroxisome biogenesis factors during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using a multiplatform strategy. METHODS: Brain tissues from coronavirus disease 2019 (COVID-19) (n = 12) and other disease control (ODC) (n = 12) patients, as well as primary human neural cells and Syrian hamsters, infected with a clinical variant of SARS-CoV-2, were investigated by droplet digital polymerase chain reaction (ddPCR), quantitative reverse transcriptase PCR (RT-qPCR), and immunodetection methods. RESULTS: SARS-CoV-2 RNA was detected in the CNS of 4 patients with COVID-19 with viral protein (NSP3 and spike) immunodetection in the brainstem. Olfactory bulb, brainstem, and cerebrum from patients with COVID-19 showed induction of pro-inflammatory transcripts (IL8, IL18, CXCL10, NOD2) and cytokines (GM-CSF and IL-18) compared to CNS tissues from ODC patients (p < 0.05). Peroxisome biogenesis factor transcripts (PEX3, PEX5L, PEX11ß, and PEX14) and proteins (PEX3, PEX14, PMP70) were suppressed in the CNS of COVID-19 compared to ODC patients (p < 0.05). SARS-CoV-2 infection of hamsters revealed viral RNA detection in the olfactory bulb at days 4 and 7 post-infection while inflammatory gene expression was upregulated in the cerebrum of infected animals by day 14 post-infection (p < 0.05). Pex3 transcript levels together with catalase and PMP70 immunoreactivity were suppressed in the cerebrum of SARS-CoV-2 infected animals (p < 0.05). INTERPRETATION: COVID-19 induced sustained neuroinflammatory responses with peroxisome biogenesis factor suppression despite limited brainstem SARS-CoV-2 neurotropism in humans. These observations offer insights into developing biomarkers and therapies, while also implicating persistent peroxisome dysfunction as a contributor to the neurological post-acute sequelae of COVID-19. ANN NEUROL 2023.

3.
J Hosp Infect ; 130: 63-94, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031453

ABSTRACT

BACKGROUND: The role of fomites in the transmission of SARS-CoV-2 is unclear. AIM: To assess whether SARS-CoV-2 can be transmitted through fomites, using evidence from viral culture studies. METHODS: Searches were conducted in the World Health Organization COVID-19 Database, PubMed, LitCovid, medRxiv, and Google Scholar to December 31st, 2021. Studies that investigated fomite transmission and performed viral culture to assess the cytopathic effect (CPE) of positive fomite samples and confirmation of SARS-CoV-2 as the cause of the CPE were included. The risk of bias using a checklist modified from the modified Quality Assessment of Diagnostic Accuracy Studies - 2 (QUADAS-2) criteria was assessed. FINDINGS: Twenty-three studies were included. The overall risk of bias was moderate. Five studies demonstrated replication-competent virus from fomite cultures and three used genome sequencing to match fomite samples with human clinical specimens. The mean cycle threshold (CT) of samples with positive viral culture was significantly lower compared with cultured samples that returned negative results (standardized mean difference: -1.45; 95% confidence interval (CI): -2.00 to -0.90; I2 = 0%; P < 0.00001). The likelihood of isolating replication-competent virus was significantly greater when CT was <30 (relative risk: 3.10; 95% CI: 1.32 to 7.31; I2 = 71%; P = 0.01). Infectious specimens were mostly detected within seven days of symptom onset. One study showed possible transmission of SARS-CoV-2 from fomites to humans. CONCLUSION: The evidence from published studies suggests that replication-competent SARS-CoV-2 is present on fomites. Replication-competent SARS-CoV-2 is significantly more likely when the PCR CT for clinical specimens and fomite samples is <30. Further studies should investigate the duration of infectiousness of SARS-CoV-2 and the frequency of transmission from fomites.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Fomites , COVID-19/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL